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Numerical methods based on unstructured grids, with irregular cells, frequently require
discrete shape functions to approximate the distribution of quantities across cells. For
control-volume mixed finite-element methods, vector shape functions are used to approx-
imate the distribution of velocities across cells. Previous, two-dimensional developments
used linear shape functions to interpolate velocities within a quadrilateral cell. For ir-
regular hexahedral cells in three dimensions, it can be shown that linear shape functions
cannot exactly represent the flux distribution across a cell under uniform flow conditions.
As a result, uniform flow cannot be exactly simulated. A new vector shape function is
proposed for use with irregular hexahedral cells that should provide for a more accu-
rate velocity approximation within a cell. This velocity shape function is a non-linear
interpolator, containing quadratic terms.

1. INTRODUCTION

For simulation of two-dimensional flow in heterogeneous porous media, it has been
shown that mixed methods, and in particular the control-volume mixed finite-element
(CVMFE) methods, are often the most accurate methods for solving for the velocity field
[1,2]. In this paper, we report on a three-dimensional velocity shape functions, based
on covariant vectors for a mapping to a unit cube and for use with irregular hexahedral
cells [3]. The three-dimensional algorithm described herein is based on the CVMFE
methodology as developed by Cai et al. [2] for the simulation of Darcian flow in two
dimensions. In the CVMFE method, the domain is discretized into hexahedral cells that
can have irregular shapes, allowing for the modeling of complex hydrogeological systems.
Shape functions serve as vector basis functions to interpolate the velocity over the cell
interiors. Vector test functions are used as weighting factors for integrating the Darcy
relation over control volumes associated with cell faces; this usage can be viewed as an
error minimization step in the control volume technique [4]. When used to approximate
the Darcy relation, the CVMFE method results in sets of discrete equations from which
bulk fluxes at cell faces and pressures at cell centers are solved for. Shape functions
have the role of using the estimated bulk fluxes at the cell surface to approximate the
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Figure 1. Left: reference cube Q with edges of unit length. Right: arbitrary cell @
from discretization with vertex locations V000, V100, V010, Voo1; V110, V101, Vo11 and Vi1
indicated.

velocity in the cell interior. If this approximation is poor, then the solution obtained
by the CVMFE method degrades. The velocity shape functions for three-dimensional
logically regular meshes proposed in [3] should, in most cases, provide a reasonable cell-
velocity estimate. These shape functions are based on a second-order approximation of
flux conservation across the cell, which in general provides for a non-linear interpolation
of fluxes and the velocities. For three-dimensional flow simulation on irregular meshes,
we believe that this function offers advantages over the linear shape function currently
used in two-dimensional simulations [2,5].

2. BASIC EQUATIONS

The numerical method outlined in this paper is based on the following steady flow
equations applied within a three-dimensional domain €2:

V'q = W(x,y,z) and q = _K(x’y’z)vp//j" (x,y,z) € (. (1)

Here q is the specific discharge vector, W(z,y, z) is a source term, p is the pressure,
K(z,y, z) is the hydraulic conductivity tensor and p is a general viscosity term. On the
surface d€) of the domain, boundary conditions can consist of specified fluxes over 0§y or
specified pressures over 0§2,. For the CVMFE method, the hydraulic conductivity tensor
is inverted, causing the Darcy relation in (1) to be written as

Vp = —puK 'q (2)

The mixed-method development herein uses the continuity relation from (1) and the
inverted Darcy relation from (2) as a basis of the numerical approximation.

The domain (2 is discretized using a logically regular mesh of hexahedral cells, as defined
subsequently. This mesh may be irregular in construction to the point where the primary,
bounding faces of cells are not planar. Any given hexahedral cell () can be described
from the location of its vertices at vog, Vioo, Vo1, Vool, V110, Viol, Voi1 and vii;, where
Vagy = (Tapy, Yapys Zapy) (Figure 1). A trilinear mapping exists such that the hexahedral
cell () is the image of a regular reference hexahedron, Q, consisting of a unit cube with
fixed vertices at (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) and (1,1,1),



on a point by point basis (see Figure 1). This mapping allows that, for any reference
location ¥ = (Z, g, 2) within @), the equivalent location r = (z,y, z) within @ is obtained
from the following expression:

I = Vo4 Vel + Vi + VeZ + ViZy + Vel 2 + Vf§Z + VyTyZ2 (3)

where v, = Voo, Vo = V100 — Vo, Vb = V010 — Vo, Ve = Vo1 — Vo, Va = V110 — Vo — Vg — Vp,
Ve =V101 = Vo= Va— V¢, Vy = V11 = Vo= Vp =V, Vg = Vi11 = Vo=V = Vp =V —V4—V—Vy.
(Also see [2,5].) An irregular mesh of hexahedra () has a reference mesh of regular cubes;
such meshes are referred to as logically regular. Directions associated with the reference
mesh are referred to as the logical x, y and z directions. Note that, should z be fixed in
t, then a face normal to the z direction within Q is determined. This face is mapped,
via (3), into an equivalent face within (). Because 0 < Z < 1, such faces are referred
to as intermediate interior cell faces. Covariant vectors, defined as X(y,2) = 0r/0z,
Y (2,2) = 0r/0y and Z(z,y) = Or/0z, allow for definition of the geometry of ). The
volumetric Jacobian J for passing from @ to Q is simply [6]

Surface Jacobians are similarly defined for faces in the logical x, y and z directions [3].

3. VELOCITY SHAPE FUNCTIONS

The shape functions proposed in [3] offer advantages for general hexahedral cells; we
present them here. The CVMFE method uses velocity basis vectors, or shape functions,
to approximate the Darcy velocity q in an arbitrary cell @) from bulk fluxes at cell faces.
Note that “flux” is defined herein to be the total volumetric discharge through a cell face,
as opposed to the volumetric discharge per unit area. The fluxes at every cell face are
denoted as fqo, fz1, fy0, fy1, fo0 and f;1 where, for instance, fyo is the flux through the
face at £ = 0. The shape functions for the cell faces are denoted as v, V31, Vyo, Vi1, V0
and v,;. Allowing V. to be this approximation of q, then its cell-wise representation is

V. = faoVao + forVa1 + fyoVyo + fy1Vy1 + froV20 + faVa. (5)

The Darcy velocity q is represented by such a relation for every cell in the mesh. For
general hexahedral cells, the shape functions are assumed to have the following form
[3]:

Voo = %[(1 — 2)XBe0 — 2(1 — 2)XBaarzao — §(1 — §)Y Byaryao — 2(1 — 2)ZB2720], (6a)
vy = %[zﬁXﬁzl — 2(1 = 2)XBr2Tza1 — J(1 = §)Y Byaryer — 2(1 — 2)ZB.272a1), (6b)
vy = %{(1 — )Y Byo — 2(1 — &)X Baarayo — §(1 — §)Y Byaryyo — 2(1 — 2)ZBa720],  (6¢)
v = LY A= 80 = X Baray — 50— )Y Barn — 20~ DBar], (60
Vo = %[(1 — 2)Zfa0 — &(1 — )X Baoraz0 — 9(1 — §)Y Byaryeo — 2(1 — 2)ZBar220),  (6e)
v, = l[éZﬁzl —&(1 = 2)XBaorzar — J(1 = 9)Y Byaryst — (1 — 2)Z o7 21], (6f)

J



where, for k =z, y, or 2z, and | = 0, 1, the r factors in (6a) - (6f) become

Wy, Bai(m, p)X(m, p) _WQH L & Bu(m,p)Y (m,p)
hal = g ZZ J(I,m,p) Tyl mZOpZO J(m,1,p)

’
m=0 p=0

et = 2, Zzﬁdmp Z(m.p) (7)

8 m=0 p=0 (m p7l)

Here, J(%,9, 2) is the volumetric Jacobian (4). The factors S, By and B, for £ = 0,1
are given by

Por = |Y X Z| /A, By = 12X X[[Aylypy Bot = [X X Y|/ As]sy, (8)

G=0>
where A,(z), Ay(9) and A,(2) are surface areas of intermediate interior faces:

A (F) = /01/01 Y % Z|(&,9,5) djds, A(5) = /01 /Ol\z x X|(2,9, 2) d2 dz,

A(3) = /01 /01 X x Y|(&, 9, 2) d2 dy. 9)
Similarly, the expressions for B2, By2 and 5,2 are

(Zgy X Xyy) - Wy,
‘W2y‘2 ’

(Y2w X Z2x) ) W2x
|W2w|2

(X2z X Y2z) . W2z
|W2Z|2

BxQ = ) 63;2 = 6,22 = (10)
Just as the cross products in (8) define cell surfaces, the cross products contained in (10)

define a set of secondary surfaces. The vectors Wy, Wy, and Wy, take the form

W2$ = sz (1/2) X Z2$ (1/2), W2y = Z2y (1/2) X ng (1/2),
Wo, = X, (1/2) x Yo (1/2). (11)

The vectors associated with secondary surfaces are: Xo,(9) = X|;o1 — X|s20, Xoy(2) =
Xlg=1 —Xlg=0, Yor(2) = Y321 — Yls—0, Yo (2) = Y301 — Y50, Zog(9) = Z|3=1 — Z|z-0
and Zy, (%) = Z|g=1 — Z|j=0. It is shown in [3] that (6a)-(6f) are second-order correct in
approximation. Note that if shape functions were approximated with linear forms then
only the first term in each of (6a)—(6f) would be present [4]. If the mesh elements are
parallelepipeds, then the quadratic terms in (6a)-(6f) will all be null; for such regular
meshes, there is no advantage to these shape functions.

Using (5) to represent q in (1), the following discrete continuity equation results when
both sides of the continuity equation in (1) are integrated over Q:

Far = Fao+ fo1 = foo + for — fao = /Q W (z,y, 2) dzdydz. (12)

This result follows from Gauss’ divergence theorem and properties of shape functions [3].
A set of discrete Darcy relations are obtained by integrating (2) against a test function
over subdomains spanning all cell faces of the discretized domain [2-4]; an equation similar
to (5) is used to approximate q in these subdomains. The discrete Darcy relation and the
discrete continuity equation (12), applied to every cell within the domain, form the sets
of equations which are the basis of the CVMFE method.
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a. Truncated pyramid. b. Tent with curved roof.

Figure 2. a. Hexahedral cell in form of a truncated pyramid. Uniform flow parallel to
vertical z axis, as indicated by arrow, is assumed. sy and s; indicate the length of the
lower and upper edges, respectively. b. Hexahedral cell in form of a tent with curved
roof. Uniform flow parallel to horizontal z axis, as indicated by arrow, is assumed. Dash-
dot lines show maxima and minima of saddle surface forming cell face 2 = 1. For both
figures, vertices vggo and vqq; are indicated; see Figure 1 for orientation.

4. UNIFORM FLOW TESTS

For general hexahedral cells and under uniform flow, linear shape functions of the
Piola type will not give the proper flux through an arbitrary cell face. As a simple
example, consider the “truncated pyramid” hexahedron @ (Figure 2a), whose bottom
face at z = (so — s1)/2 (2 = 0) is a square of side sy given by —s0/2 < z < s0/2,
—50/2 < y < 59/2 (with area s2), and whose top face at z = (s; — 59)/2 (2 = 1) is the
square of side s; given by —s1/2 < 1 < 51/2, —51/2 <y < 51/2 (with area s?):

r =a2-1)/2, y = a(20—-1)/2, z = (2—1/2)(s1 — o) (13)

where a = sg + 2(s1 — s¢). The four lateral faces are planar trapezoids (see Figure 2a).
For a unit vertical uniform flow q = (0, 0, 1), the exact flux across horizontal interior faces
for fixed Z is the cross-sectional area,

f2(2) = [(1—2)so+ 251]% (14)

A linear shape function, while producing the correct fluxes at the top and bottom, will
approximate the flux at a face Z as

f(2) = (1= 2)£:(0) + 2£.(1) = (1 — 2)s5 + 2s7. (15)

A quadratic flux interpolation, of the type contained in (6a)—(6f), can deal exactly with
this example. For uniform flow in general, (5) with these shape functions gives an exact
cell velocity interpolation if the primary cell faces and secondary surfaces (defined after
(10)) are all planar [3]. Mesh construction can usually produce planar primary faces, but



Figure 3. Ly norm for mesh composed of Figure 4. L, norm for mesh composed

cells with quasi-random planar faces; see of cells with random vertices; see text for
text for h. Solid line: non-linear shape h. Solid line: non-linear shape function;
function; Dashed line: linear shape func- Dashed line: linear shape function.

tion.

planar secondary surfaces can be more problematic; in particular, secondary surfaces can
be non-planar even when all exterior cell faces are planar. However, our experience has
been that, even if the secondary surfaces are non-planar, quite reasonable results can be
obtained as long as the primary faces are planar [3]. Planar secondary surfaces can be
forced by insisting that each cell have at least one pair of parallel opposite faces.

Use of shape functions (6a)—(6f) becomes problematic when the primary faces are non-
planar; an example of a non-planar primary face is the “tent with curved roof” (Figure
2b) with unit square base at z = 0 (2 = 0), vertical lateral faces, and roof height hq at
two opposite vertices (0,0, hg), (1,1, hy) and height h; at the other two vertices:

v=%, y=19, 2= (ho[(1 = 2)(1 = 9) + 2] + [(1 — 2)§ + 2(1 — §)]) 2. (16)

In (6a)—(6f) the covariant vectors X, Y and Z provide the directional underpinnings for
the shape functions. However, at face 2 = 1, X, Y, and (1 — 2)Z all have null normal
component, and f,; = 01in (5) for g = (1,0,0). Thus V. in (5) has null normal component
at all points, while q does not. Hence (6a)—(6f) cannot interpolate uniform g exactly.
Two sets of simulations were performed to demonstrate these effects; in all cases, meshes
with 8 x8x 8 cells were used. In the first, irregular cells with planar, quasi-random faces
were generated, starting with random vertices on three adjoining exterior faces of ).
These vertices were created from a regular, two-dimensional mesh on each face by adding
to each regular vertex location a uniform random variable from the interval (—h/2, h/2).
Starting at the corner where the three exterior faces meet, cells were created by connecting
vertices of three existing cell faces to an interior vertex, requiring that the new cell faces
forming this connection be planar. This results in interior cells with planar faces, none



Figure 5. Example of three exterior
faces of a 4x4x4 domain that share vertex
(0,0,0). Fold up the left (yz) face along the
y-axis and the bottom (zz) face along the
z-axis. Randomness of vertex locations is
exaggerated.

[AsO™

Figure 6. Ly norm for mesh composed of
cells with quasi-random planar faces; see
text for (As). Solid line: non-linear shape
function; Dashed line: linear shape func-
tion; Circle: d is one domain length; Cross:
d is two domain lengths.

of which are parallel. The secondary surfaces of cells in this grid are rarely, if ever,
planar. Error in simulating uniform flow parallel to the = direction with meshes of this
type was quantified using the L, norm [4]. Figure 3 is a depiction of the L, norm results
for this case; increasing h caused successive meshes to be increasingly irregular. These
results demonstrate the superiority of the non-linear shape function over the linear shape
function for simulating uniform flow. As the secondary surfaces associated with vectors
Xoy, X2z, Yor , Yo, Zo, and Zy, are non-planar, the non-linear shape function provides
an improved result, but not an exact result. In the second set of simulations (Figure
4), the mesh was created by perturbing all the vertex locations of a regular mesh with
a uniform random variable; the vertices on 02 were perturbed only within the plane
forming the surface. This procedure results in meshes where none of the cell faces interior
to 2 are planar; uniform flow in the z direction was simulated. The results shown in
Figure 4 indicate no particular advantage for the non-linear shape function. As this set of
simulations primarily tests the non-planar aspect of the primary cell faces, these results
confirm the observations regarding the ‘tent with curved roof” cell depicted in Figure 2b.

5. NON-UNIFORM FLOW TESTS

For non-uniform flow, a dipole test was devised whereby a cubic domain (four units on
a side) was located midway between a source and a sink of equal strength; the domain
was oriented such that the edge y = 0, 2z = 0 coincided with a straight line between
the poles. The distance from a dipole to the closest domain corner d was allowed to be
either one or two domain lengths. Flux boundary conditions for the simulations were



obtained by integrating the normal component of the dipole velocities over the exterior of
the domain; these boundary flux estimates were generally very accurate. Quasi-random
meshes with planar faces were generated by the same method as before, except that
now all cell faces perpendicular to the z direction are parallel (Figure 5); vertices on the
exterior faces were randomized in the y and z directions with a uniform random variable
from the interval (—0.1,0.1). This procedure results in planar secondary surfaces for all
cells [3]. Meshes with 4x4x4, 8x8x8, 16 x16x 16 and 32x32x 32 cells were generated
in this manner, corresponding to mean discretization lengths (As) of 1, 1/2, 1/4 and 1/8
respectively. The results from these simulations, characterized by their L, norms, are
depicted in Figure 6. These results indicate that, at the coarsest discretization, the error
from approximating non-uniform flow overwhelms any corrective effect of the non-linear
shape function on the simulation. This error results because the flux estimates on the cell
surfaces produced by CVMFE are average or bulk estimates. However, with refinement
of the grid (decreasing (As)), the non-linear shape function outperforms the linear shape
function; with (As) = 1/8, an order of magnitude difference can be observed. This
results, in large part, because the linear shape functions cease to provide improvement in
performance with increased grid refinement when the discretization is quasi-random (see
[3] for a more theoretical discussion of the linear/non-linear shape function behavior).

6. CONCLUDING REMARKS

In [3] we note that the convergence of CVMFE, with shape functions (6a)—(6f), is
second order. Here it is demonstrated that the non-linear shape functions can provide for
better resolution of uniform flow with general meshes, relative to linear shape functions,
provided that primary cell faces are planar. For non-uniform flow, the level of mesh
refinement is all important; only when a general grid is relatively fine will the non-linear
aspects of the proposed shape functions contribute significantly.
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